Molecular-sized fluorescent nanodiamonds.

نویسندگان

  • Igor I Vlasov
  • Andrey A Shiryaev
  • Torsten Rendler
  • Steffen Steinert
  • Sang-Yun Lee
  • Denis Antonov
  • Márton Vörös
  • Fedor Jelezko
  • Anatolii V Fisenko
  • Lubov F Semjonova
  • Johannes Biskupek
  • Ute Kaiser
  • Oleg I Lebedev
  • Ilmo Sildos
  • Philip R Hemmer
  • Vitaly I Konov
  • Adam Gali
  • Jörg Wrachtrup
چکیده

Doping of carbon nanoparticles with impurity atoms is central to their application. However, doping has proven elusive for very small carbon nanoparticles because of their limited availability and a lack of fundamental understanding of impurity stability in such nanostructures. Here, we show that isolated diamond nanoparticles as small as 1.6 nm, comprising only ∼400 carbon atoms, are capable of housing stable photoluminescent colour centres, namely the silicon vacancy (SiV). Surprisingly, fluorescence from SiVs is stable over time, and few or only single colour centres are found per nanocrystal. We also observe size-dependent SiV emission supported by quantum-chemical simulation of SiV energy levels in small nanodiamonds. Our work opens the way to investigating the physics and chemistry of molecular-sized cubic carbon clusters and promises the application of ultrasmall non-perturbative fluorescent nanoparticles as markers in microscopy and sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study.

Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamond...

متن کامل

Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-re...

متن کامل

Characterization and application of single fluorescent nanodiamonds as cellular biomarkers.

Type Ib diamonds emit bright fluorescence at 550-800 nm from nitrogen-vacancy point defects, (N-V)(0) and (N-V)(-), produced by high-energy ion beam irradiation and subsequent thermal annealing. The emission, together with noncytotoxicity and easiness of surface functionalization, makes nano-sized diamonds a promising fluorescent probe for single-particle tracking in heterogeneous environments....

متن کامل

High yield fabrication of fluorescent nanodiamonds.

A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabri...

متن کامل

STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers.

We report Stimulated Emission Depletion (STED) imaging of green fluorescent nanodiamonds containing Nitrogen-acancy-Nitrogen (NVN) centers with a resolution of 70 nm using a commercial microscope. Nanodiamonds have been demonstrated to have the potential to be excellent cellular biomarkers thanks to their low toxicity and nonbleaching fluorescence, and are especially appealing for superresoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2014